264 lines
		
	
	
		
			5.6 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
			
		
		
	
	
			264 lines
		
	
	
		
			5.6 KiB
		
	
	
	
		
			Markdown
		
	
	
	
	
	
Pytorch  备忘清单
 | 
						||
===
 | 
						||
 | 
						||
Pytorch 是一种开源机器学习框架,可加速从研究原型设计到生产部署的过程,备忘单是  官网
 | 
						||
备忘清单为您提供了 [Pytorch](https://pytorch.org/) 基本语法和初步应用参考
 | 
						||
 | 
						||
入门
 | 
						||
-----
 | 
						||
 | 
						||
### 介绍
 | 
						||
 | 
						||
- [Pytorch 官网](https://pytorch.org/) _(pytorch.org)_
 | 
						||
- [Pytorch 官方备忘清单](https://pytorch.org/tutorials/beginner/ptcheat.html) _(pytorch.org)_
 | 
						||
 | 
						||
### 认识 Pytorch
 | 
						||
 | 
						||
```python
 | 
						||
from __future__ import print_function
 | 
						||
import torch
 | 
						||
x = torch.empty(5, 3)
 | 
						||
>>> print(x)
 | 
						||
tensor([
 | 
						||
    [2.4835e+27, 2.5428e+30, 1.0877e-19],
 | 
						||
    [1.5163e+23, 2.2012e+12, 3.7899e+22],
 | 
						||
    [5.2480e+05, 1.0175e+31, 9.7056e+24],
 | 
						||
    [1.6283e+32, 3.7913e+22, 3.9653e+28],
 | 
						||
    [1.0876e-19, 6.2027e+26, 2.3685e+21]
 | 
						||
])
 | 
						||
```
 | 
						||
<!--rehype:className=wrap-text-->
 | 
						||
 | 
						||
Tensors 张量: 张量的概念类似于Numpy中的ndarray数据结构, 最大的区别在于Tensor可以利用GPU的加速功能.
 | 
						||
 | 
						||
### 创建一个全零矩阵
 | 
						||
 | 
						||
```python
 | 
						||
x = torch.zeros(5, 3, dtype=torch.long)
 | 
						||
>>> print(x)
 | 
						||
tensor([[0, 0, 0],
 | 
						||
        [0, 0, 0],
 | 
						||
        [0, 0, 0],
 | 
						||
        [0, 0, 0],
 | 
						||
        [0, 0, 0]])
 | 
						||
```
 | 
						||
 | 
						||
创建一个全零矩阵并可指定数据元素的类型为long
 | 
						||
 | 
						||
### 数据创建张量
 | 
						||
 | 
						||
```python
 | 
						||
x = torch.tensor([2.5, 3.5])
 | 
						||
>>> print(x)
 | 
						||
tensor([2.5000, 3.3000])
 | 
						||
```
 | 
						||
 | 
						||
Pytorch 的基本语法
 | 
						||
---------------
 | 
						||
 | 
						||
### 加法操作(1)
 | 
						||
 | 
						||
```python
 | 
						||
y = torch.rand(5, 3)
 | 
						||
>>> print(x + y)
 | 
						||
tensor([[ 1.6978, -1.6979,  0.3093],
 | 
						||
        [ 0.4953,  0.3954,  0.0595],
 | 
						||
        [-0.9540,  0.3353,  0.1251],
 | 
						||
        [ 0.6883,  0.9775,  1.1764],
 | 
						||
        [ 2.6784,  0.1209,  1.5542]])
 | 
						||
```
 | 
						||
 | 
						||
### 加法操作(2)
 | 
						||
 | 
						||
```python
 | 
						||
>>> print(torch.add(x, y))
 | 
						||
tensor([[ 1.6978, -1.6979,  0.3093],
 | 
						||
        [ 0.4953,  0.3954,  0.0595],
 | 
						||
        [-0.9540,  0.3353,  0.1251],
 | 
						||
        [ 0.6883,  0.9775,  1.1764],
 | 
						||
        [ 2.6784,  0.1209,  1.5542]])
 | 
						||
```
 | 
						||
 | 
						||
### 加法操作(3)
 | 
						||
 | 
						||
```python
 | 
						||
# 提前设定一个空的张量
 | 
						||
result = torch.empty(5, 3)
 | 
						||
# 将空的张量作为加法的结果存储张量
 | 
						||
 torch.add(x, y, out=result)
 | 
						||
>>> print(result)
 | 
						||
tensor([[ 1.6978, -1.6979,  0.3093],
 | 
						||
        [ 0.4953,  0.3954,  0.0595],
 | 
						||
        [-0.9540,  0.3353,  0.1251],
 | 
						||
        [ 0.6883,  0.9775,  1.1764],
 | 
						||
        [ 2.6784,  0.1209,  1.5542]])
 | 
						||
```
 | 
						||
 | 
						||
### 加法操作(4)
 | 
						||
 | 
						||
```python
 | 
						||
y.add_(x)
 | 
						||
>>> print(y)
 | 
						||
tensor([[ 1.6978, -1.6979,  0.3093],
 | 
						||
        [ 0.4953,  0.3954,  0.0595],
 | 
						||
        [-0.9540,  0.3353,  0.1251],
 | 
						||
        [ 0.6883,  0.9775,  1.1764],
 | 
						||
        [ 2.6784,  0.1209,  1.5542]])
 | 
						||
```
 | 
						||
 | 
						||
注意: 所有 `in-place` 的操作函数都有一个下划线的后缀。
 | 
						||
比如 `x.copy_(y)`, `x.add_(y)`, 都会直接改变x的值
 | 
						||
 | 
						||
### 张量操作
 | 
						||
 | 
						||
```python
 | 
						||
>>> print(x[:, 1])
 | 
						||
tensor([-2.0902, -0.4489, -0.1441,  0.8035, -0.8341])
 | 
						||
```
 | 
						||
<!--rehype:className=wrap-text-->
 | 
						||
 | 
						||
### 张量形状
 | 
						||
 | 
						||
```python
 | 
						||
x = torch.randn(4, 4)
 | 
						||
# tensor.view()操作需要保证数据元素的总数量不变
 | 
						||
y = x.view(16)
 | 
						||
# -1代表自动匹配个数
 | 
						||
z = x.view(-1, 8)
 | 
						||
>>> print(x.size(), y.size(), z.size())
 | 
						||
torch.Size([4, 4]) torch.Size([16]) torch.Size([2, 8])
 | 
						||
```
 | 
						||
<!--rehype:className=wrap-text-->
 | 
						||
 | 
						||
### 取张量元素
 | 
						||
 | 
						||
```python
 | 
						||
x = torch.randn(1)
 | 
						||
>>> print(x)
 | 
						||
>>> print(x.item())
 | 
						||
tensor([-0.3531])
 | 
						||
-0.3530771732330322
 | 
						||
```
 | 
						||
 | 
						||
### Torch Tensor 和 Numpy array互换
 | 
						||
 | 
						||
```python
 | 
						||
a = torch.ones(5)
 | 
						||
>>> print(a)
 | 
						||
tensor([1., 1., 1., 1., 1.])
 | 
						||
```
 | 
						||
 | 
						||
Torch Tensor和Numpy array共享底层的内存空间, 因此改变其中一个的值, 另一个也会随之被改变
 | 
						||
 | 
						||
### Torch Tensor 转换为 Numpy array
 | 
						||
 | 
						||
```python
 | 
						||
b = a.numpy()
 | 
						||
>>> print(b)
 | 
						||
[1. 1. 1. 1. 1.]
 | 
						||
```
 | 
						||
 | 
						||
### Numpy array转换为Torch Tensor
 | 
						||
 | 
						||
```python
 | 
						||
import numpy as np
 | 
						||
a = np.ones(5)
 | 
						||
b = torch.from_numpy(a)
 | 
						||
np.add(a, 1, out=a)
 | 
						||
>>> print(a)
 | 
						||
>>> print(b)
 | 
						||
[2. 2. 2. 2. 2.]
 | 
						||
tensor([2., 2., 2., 2., 2.], dtype=torch.float64)
 | 
						||
```
 | 
						||
<!--rehype:className=wrap-text-->
 | 
						||
 | 
						||
注意: 所有在CPU上的Tensors, 除了CharTensor, 都可以转换为Numpy array并可以反向转换.
 | 
						||
 | 
						||
导入 Imports
 | 
						||
---
 | 
						||
 | 
						||
### 一般
 | 
						||
 | 
						||
```python
 | 
						||
# 根包
 | 
						||
import torch
 | 
						||
# 数据集表示和加载
 | 
						||
from torch.utils.data import Dataset, DataLoader
 | 
						||
```
 | 
						||
<!--rehype:className=wrap-text-->
 | 
						||
 | 
						||
### 神经网络 API
 | 
						||
 | 
						||
```python
 | 
						||
# 计算图
 | 
						||
import torch.autograd as autograd
 | 
						||
# 计算图中的张量节点
 | 
						||
from torch import Tensor
 | 
						||
# 神经网络
 | 
						||
import torch.nn as nn
 | 
						||
# 层、激活等
 | 
						||
import torch.nn.functional as F
 | 
						||
# 优化器,例如 梯度下降、ADAM等
 | 
						||
import torch.optim as optim
 | 
						||
# 混合前端装饰器和跟踪 jit
 | 
						||
from torch.jit import script, trace
 | 
						||
```
 | 
						||
 | 
						||
### Torchscript 和 JIT
 | 
						||
 | 
						||
```python
 | 
						||
torch.jit.trace()
 | 
						||
```
 | 
						||
 | 
						||
使用你的模块或函数和一个例子,数据输入,并追溯计算步骤,数据在模型中前进时遇到的情况
 | 
						||
 | 
						||
```python
 | 
						||
@script
 | 
						||
```
 | 
						||
 | 
						||
装饰器用于指示被跟踪代码中的数据相关控制流
 | 
						||
 | 
						||
### ONNX
 | 
						||
 | 
						||
```python
 | 
						||
torch.onnx.export(model, dummy data, xxxx.proto)
 | 
						||
# 导出 ONNX 格式
 | 
						||
# 使用经过训练的模型模型,dummy
 | 
						||
# 数据和所需的文件名
 | 
						||
 | 
						||
model = onnx.load("alexnet.proto")
 | 
						||
# 加载 ONNX 模型
 | 
						||
onnx.checker.check_model(model)
 | 
						||
# 检查模型,IT 是否结构良好
 | 
						||
 | 
						||
onnx.helper.printable_graph(model.graph)
 | 
						||
# 打印一个人类可读的,图的表示
 | 
						||
```
 | 
						||
<!--rehype:className=wrap-text-->
 | 
						||
 | 
						||
### Vision
 | 
						||
 | 
						||
```python
 | 
						||
# 视觉数据集,架构 & 变换
 | 
						||
from torchvision import datasets, models, transforms
 | 
						||
# 组合转换
 | 
						||
import torchvision.transforms as transforms
 | 
						||
```
 | 
						||
<!--rehype:className=wrap-text-->
 | 
						||
 | 
						||
### 分布式训练
 | 
						||
 | 
						||
```python
 | 
						||
# 分布式通信
 | 
						||
import torch.distributed as dist
 | 
						||
# 内存共享进程
 | 
						||
from torch.multiprocessing import Process
 | 
						||
```
 | 
						||
<!--rehype:className=wrap-text-->
 | 
						||
 | 
						||
另见
 | 
						||
---
 | 
						||
 | 
						||
- [Pytorch 官网](https://pytorch.org/) _(pytorch.org)_
 | 
						||
- [Pytorch 官方备忘清单](https://pytorch.org/tutorials/beginner/ptcheat.html) _(pytorch.org)_
 |