* Enhance audio processing and wake word detection
- Set task priority in Application::Run to improve responsiveness.
- Log detected wake words with their state in HandleWakeWordDetectedEvent.
- Streamline audio feeding in AudioService to handle both wake word and audio processor events.
- Implement input buffering in AfeAudioProcessor, AfeWakeWord, CustomWakeWord, and EspWakeWord to manage audio data more efficiently.
- Clear input buffers on stop to prevent residual data issues.
* Refactor audio processing to enhance thread safety and state management
- Implement early return checks in Feed methods of AfeAudioProcessor, AfeWakeWord, CustomWakeWord, and EspWakeWord to prevent processing when not running.
- Introduce std::atomic for running state in CustomWakeWord and EspWakeWord to ensure thread-safe access.
- Consolidate input buffer management with mutex locks to avoid race conditions during Stop and Feed operations.
* Refactor listening mode handling and wake word detection configuration
- Replace direct mode setting logic with a new GetDefaultListeningMode method for improved clarity and maintainability.
- Update HandleToggleChatEvent, HandleWakeWordDetectedEvent, and ContinueWakeWordInvoke to utilize the new method for determining listening mode.
- Introduce Kconfig option WAKE_WORD_DETECTION_IN_LISTENING to enable or disable wake word detection during listening mode, enhancing configurability.