doc: update docs/pytorch.md #649
This commit is contained in:
parent
739b18048d
commit
a1a1bd60f8
114
docs/pytorch.md
114
docs/pytorch.md
@ -13,6 +13,7 @@ Pytorch 是一种开源机器学习框架,可加速从研究原型设计到生
|
||||
- [Pytorch 官方备忘清单](https://pytorch.org/tutorials/beginner/ptcheat.html) _(pytorch.org)_
|
||||
|
||||
### 认识 Pytorch
|
||||
<!--rehype:wrap-class=row-span-2-->
|
||||
|
||||
```python
|
||||
from __future__ import print_function
|
||||
@ -32,6 +33,7 @@ tensor([
|
||||
Tensors 张量: 张量的概念类似于Numpy中的ndarray数据结构, 最大的区别在于Tensor可以利用GPU的加速功能.
|
||||
|
||||
### 创建一个全零矩阵
|
||||
<!--rehype:wrap-class=row-span-2-->
|
||||
|
||||
```python
|
||||
x = torch.zeros(5, 3, dtype=torch.long)
|
||||
@ -95,6 +97,7 @@ tensor([[ 1.6978, -1.6979, 0.3093],
|
||||
```
|
||||
|
||||
### 加法操作(4)
|
||||
<!--rehype:wrap-class=row-span-2-->
|
||||
|
||||
```python
|
||||
y.add_(x)
|
||||
@ -118,6 +121,7 @@ tensor([-2.0902, -0.4489, -0.1441, 0.8035, -0.8341])
|
||||
<!--rehype:className=wrap-text-->
|
||||
|
||||
### 张量形状
|
||||
<!--rehype:wrap-class=row-span-2-->
|
||||
|
||||
```python
|
||||
x = torch.randn(4, 4)
|
||||
@ -178,13 +182,21 @@ tensor([2., 2., 2., 2., 2.], dtype=torch.float64)
|
||||
|
||||
```python
|
||||
>>> x = torch.rand(1, 2, 1, 28, 1)
|
||||
>>> x.squeeze().shape # squeeze不加参数,默认去除所有为1的维度
|
||||
|
||||
# squeeze不加参数,默认去除所有为1的维度
|
||||
>>> x.squeeze().shape
|
||||
torch.Size([2, 28])
|
||||
>>> x.squeeze(dim=0).shape # squeeze加参数,去除指定为1的维度
|
||||
|
||||
# squeeze加参数,去除指定为1的维度
|
||||
>>> x.squeeze(dim=0).shape
|
||||
torch.Size([2, 1, 28, 1])
|
||||
>>> x.squeeze(1).shape # squeeze加参数,如果不为1,则不变
|
||||
|
||||
# squeeze加参数,如果不为1,则不变
|
||||
>>> x.squeeze(1).shape
|
||||
torch.Size([1, 2, 1, 28, 1])
|
||||
>>> torch.squeeze(x,-1).shape # 既可以是函数,也可以是方法
|
||||
|
||||
# 既可以是函数,也可以是方法
|
||||
>>> torch.squeeze(x,-1).shape
|
||||
torch.Size([1, 2, 1, 28])
|
||||
```
|
||||
|
||||
@ -192,47 +204,59 @@ torch.Size([1, 2, 1, 28])
|
||||
|
||||
```python
|
||||
>>> x = torch.rand(2, 28)
|
||||
>>> x.unsqueeze(0).shape # unsqueeze必须加参数, _ 2 _ 28 _
|
||||
torch.Size([1, 2, 28]) # 参数代表在哪里添加维度 0 1 2
|
||||
>>> torch.unsqueeze(x, -1).shape # 既可以是函数,也可以是方法
|
||||
# unsqueeze必须加参数, _ 2 _ 28 _
|
||||
>>> x.unsqueeze(0).shape
|
||||
# 参数代表在哪里添加维度 0 1 2
|
||||
torch.Size([1, 2, 28])
|
||||
# 既可以是函数,也可以是方法
|
||||
>>> torch.unsqueeze(x, -1).shape
|
||||
torch.Size([2, 28, 1])
|
||||
```
|
||||
|
||||
Cuda 相关
|
||||
---
|
||||
|
||||
### 检查 Cuda 是否可用
|
||||
|
||||
```python
|
||||
>>> import torch.cuda
|
||||
>>> torch.cuda.is_available()
|
||||
>>> True
|
||||
```
|
||||
|
||||
### 列出 GPU 设备
|
||||
<!--rehype:wrap-class=col-span-2 row-span-2-->
|
||||
|
||||
```python
|
||||
import torch
|
||||
|
||||
device_count = torch.cuda.device_count()
|
||||
print("CUDA 设备")
|
||||
|
||||
for i in range(device_count):
|
||||
device_name = torch.cuda.get_device_name(i)
|
||||
total_memory = torch.cuda.get_device_properties(i).total_memory / (1024 ** 3)
|
||||
print(f"├── 设备 {i}: {device_name}, 容量: {total_memory:.2f} GiB")
|
||||
|
||||
print("└── (结束)")
|
||||
```
|
||||
|
||||
### 将模型、张量等数据在 GPU 和内存之间进行搬运
|
||||
|
||||
```python
|
||||
import torch
|
||||
# Replace 0 to your GPU device index. or use "cuda" directly.
|
||||
# 将 0 替换为您的 GPU 设备索引或者直接使用 "cuda"
|
||||
device = f"cuda:0"
|
||||
# Move to GPU
|
||||
# 移动到GPU
|
||||
tensor_m = torch.tensor([1, 2, 3])
|
||||
tensor_g = tensor_m.to(device)
|
||||
model_m = torch.nn.Linear(1, 1)
|
||||
model_g = model_m.to(device)
|
||||
# Move back.
|
||||
# 向后移动
|
||||
tensor_m = tensor_g.cpu()
|
||||
model_m = model_g.cpu()
|
||||
```
|
||||
|
||||
|
||||
导入 Imports
|
||||
---
|
||||
|
||||
@ -241,28 +265,71 @@ model_m = model_g.cpu()
|
||||
```python
|
||||
# 根包
|
||||
import torch
|
||||
# 数据集表示和加载
|
||||
```
|
||||
|
||||
数据集表示和加载
|
||||
|
||||
```python
|
||||
from torch.utils.data import Dataset, DataLoader
|
||||
```
|
||||
<!--rehype:className=wrap-text-->
|
||||
|
||||
### 神经网络 API
|
||||
<!--rehype:wrap-class=row-span-2-->
|
||||
|
||||
```python
|
||||
# 计算图
|
||||
import torch.autograd as autograd
|
||||
# 计算图中的张量节点
|
||||
from torch import Tensor
|
||||
# 神经网络
|
||||
```
|
||||
|
||||
神经网络
|
||||
|
||||
```python
|
||||
import torch.nn as nn
|
||||
|
||||
# 层、激活等
|
||||
import torch.nn.functional as F
|
||||
# 优化器,例如 梯度下降、ADAM等
|
||||
import torch.optim as optim
|
||||
# 混合前端装饰器和跟踪 jit
|
||||
```
|
||||
|
||||
混合前端装饰器和跟踪 jit
|
||||
|
||||
```python
|
||||
from torch.jit import script, trace
|
||||
```
|
||||
|
||||
### ONNX
|
||||
<!--rehype:wrap-class=row-span-2-->
|
||||
|
||||
```python
|
||||
torch.onnx.export(model, dummy data, xxxx.proto)
|
||||
# 导出 ONNX 格式
|
||||
# 使用经过训练的模型模型,dummy
|
||||
# 数据和所需的文件名
|
||||
```
|
||||
<!--rehype:className=wrap-text-->
|
||||
|
||||
加载 ONNX 模型
|
||||
|
||||
```python
|
||||
model = onnx.load("alexnet.proto")
|
||||
```
|
||||
|
||||
检查模型,IT 是否结构良好
|
||||
|
||||
```python
|
||||
onnx.checker.check_model(model)
|
||||
```
|
||||
|
||||
打印一个人类可读的,图的表示
|
||||
|
||||
```python
|
||||
onnx.helper.printable_graph(model.graph)
|
||||
```
|
||||
|
||||
### Torchscript 和 JIT
|
||||
|
||||
```python
|
||||
@ -277,25 +344,8 @@ torch.jit.trace()
|
||||
|
||||
装饰器用于指示被跟踪代码中的数据相关控制流
|
||||
|
||||
### ONNX
|
||||
|
||||
```python
|
||||
torch.onnx.export(model, dummy data, xxxx.proto)
|
||||
# 导出 ONNX 格式
|
||||
# 使用经过训练的模型模型,dummy
|
||||
# 数据和所需的文件名
|
||||
|
||||
model = onnx.load("alexnet.proto")
|
||||
# 加载 ONNX 模型
|
||||
onnx.checker.check_model(model)
|
||||
# 检查模型,IT 是否结构良好
|
||||
|
||||
onnx.helper.printable_graph(model.graph)
|
||||
# 打印一个人类可读的,图的表示
|
||||
```
|
||||
<!--rehype:className=wrap-text-->
|
||||
|
||||
### Vision
|
||||
<!--rehype:wrap-class=col-span-2-->
|
||||
|
||||
```python
|
||||
# 视觉数据集,架构 & 变换
|
||||
|
Loading…
x
Reference in New Issue
Block a user